FAIRCHILD

SEMICONDUCTOR

74F175 Quad D-Type Flip-Flop

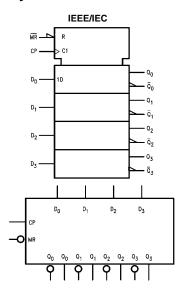
General Description

The 74F175 is a high-speed quad D-type flip-flop. The device is useful for general flip-flop requirements where clock and clear inputs are common. The information on the D inputs is stored during the LOW-to-HIGH clock transition. Both true and complemented outputs of each flip-flop are provided. A Master Reset input resets all flip-flops, independent of the Clock or D inputs, LOW.

Features

Edge-triggered D-type inputs

April 1988


Revised September 2000

- Buffered positive edge-triggered clock
- Asynchronous common reset
- True and complement output

Ordering Code:

Order Number	Package Number	Package Description						
74F175SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow						
74F175SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide						
74F175PC N16E 16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide								
Devices also available	in Tape and Reel. Specify	by appending the suffix letter "X" to the ordering code.						

Logic Symbols

Connection Diagram

$\overline{\mathbf{MR}} = \begin{bmatrix} \mathbf{I} & \mathbf{I} \\ \mathbf{Q}_{0} & \mathbf{I} \\ \mathbf{Q}_{0} & \mathbf{D}_{0} \\ \mathbf{D}_{0} & \mathbf{D}_{1} \\ \mathbf{Q}_{1} & \mathbf{I} \\ \mathbf{Q}_{1} \end{bmatrix}$	1 2 3 4 5 6 7	0	$\begin{array}{c} 16 & -V_{CC} \\ 15 & -Q_3 \\ 14 & -\bar{Q}_3 \\ 13 & -D_3 \\ 12 & -D_2 \\ 11 & -\bar{Q}_2 \\ 10 & -Q_2 \end{array}$
Q ₁ — GND—	7 8		

74F175 Quad D-Type Flip-Flop

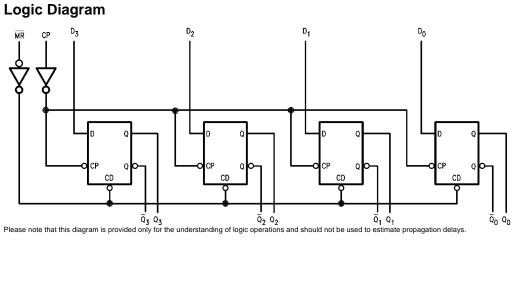
© 2000 Fairchild Semiconductor Corporation DS009490

Unit Loading/Fan Out

Din Nomeo	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output Ι _{OH} /Ι _{OL} 20 μΑ/-0.6 mA 20 μΑ/-0.6 mA 20 μΑ/-0.6 mA -0 μΑ/-0.6 mA	
D ₀ –D ₃	Data Inputs	1.0/1.0	20 μA/–0.6 mA	
СР	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/–0.6 mA	
MR	Master Reset Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA	
Q ₀ –Q ₃	True Outputs	50/33.3	–1 mA/20 mA	
$\overline{Q}_0 - \overline{Q}_3$	Complement Outputs	50/33.3	–1 mA/20 mA	

Functional Description

The 74F175 consists of four edge-triggered D-type flipflops with individual D inputs and Q and \overline{Q} outputs. The Clock and Master Reset are common. The four flip-flops will store the state of their individual D inputs on the LOW-to-HIGH clock (CP) transition, causing individual Q and \overline{Q} outputs to follow. A LOW input on the Master Reset $(\overline{\text{MR}})$ will force all Q outputs LOW and $\overline{\text{Q}}$ outputs HIGH independent of Clock or Data inputs. The 74F175 is useful for general logic applications where a common Master Reset and Clock are acceptable.


		Inputs	Out	puts	
ī	MR	СР	D _n	Q _n	\overline{Q}_{n}
	L	Х	Х	L	Н
	н	~	н	н	L
	н	~	L	L	н

H = HIGH Voltage Level L = LOW Voltage Level

Truth Table

X = Immaterial

- = LOW-to-HIGH Clock Transition

Absolute Maximum Ratings(Note 1)

Storage Temperature Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2) Input Current (Note 2) Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$) Standard Output 3-STATE Output Current Applied to Output in LOW State (Max) twice the rated I_{OL} (mA)

-65°C to +150°C $-55^{\circ}C$ to $+125^{\circ}C$ $-55^{\circ}C$ to $+150^{\circ}C$ -0.5V to +7.0V -0.5V to +7.0V -30 mA to +5.0 mA

-0.5V to V_{CC}

-0.5V to +5.5V

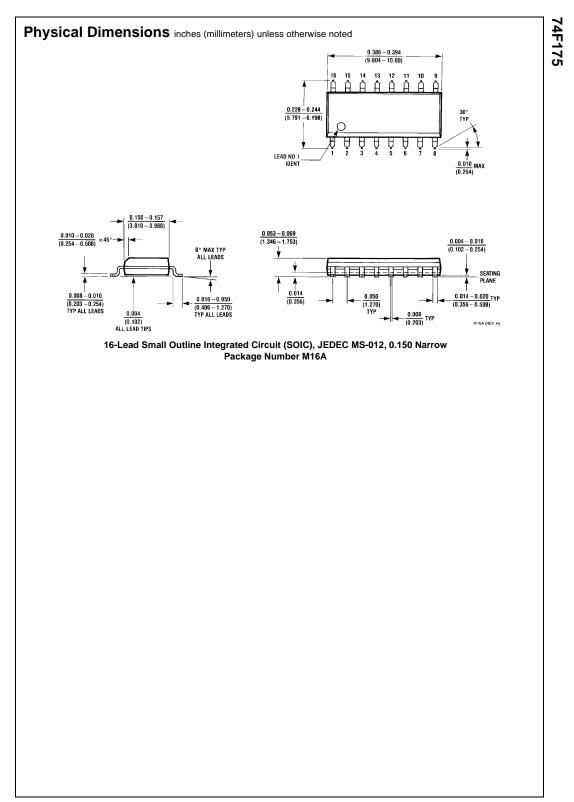
Recommended Operating Conditions

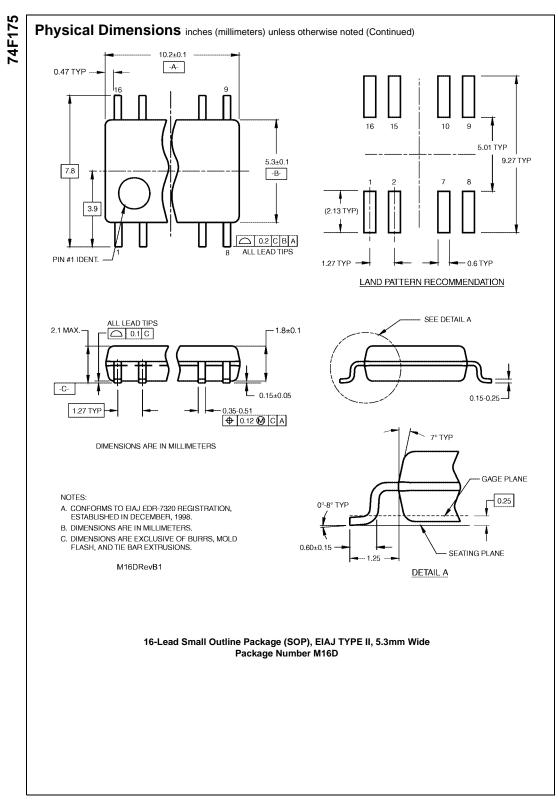
Free Air Ambient Temperature Supply Voltage

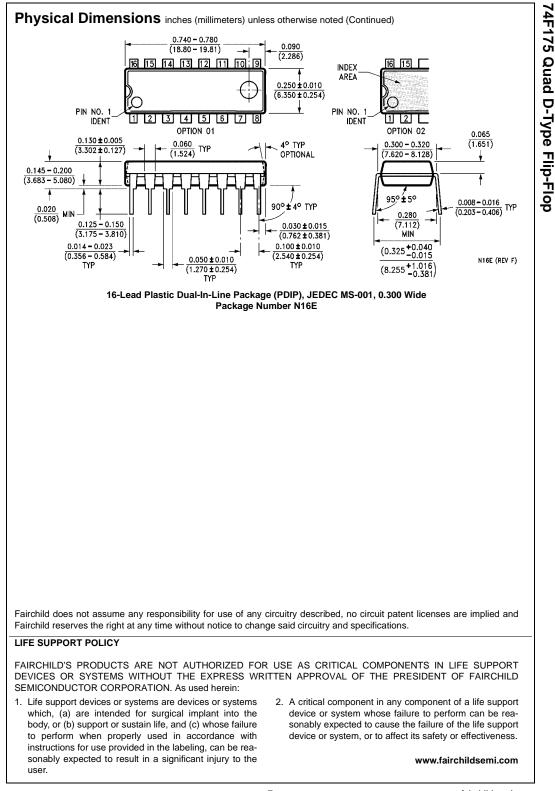
 $0^{\circ}C$ to $+70^{\circ}C$ +4.5V to +5.5V 74F175

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.


Symbol	Parameter		Min	Тур	Max	Units	V _{cc}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA
V _{OH}	Output HIGH Voltage	10% V _{CC} 5% V _{CC}	2.5 2.7			V	Min	$I_{OH} = -1 \text{ mA}$ $I_{OH} = -1 \text{ mA}$
V _{OL}	Output LOW Voltage	10% V _{CC}	2.1		0.5	v	Min	$I_{OL} = 20 \text{ mA}$
I _{IH}	Input HIGH Current				5.0	μΑ	Max	V _{IN} = 2.7V
I _{BVI}	Input HIGH Current Breakdown Test				7.0	μΑ	Max	V _{IN} = 7.0V
ICEX	Output HIGH Leakage Current				50	μΑ	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage Test		4.75			v	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current				3.75	μΑ	0.0	V _{IOD} = 150 mV All Other Pins Grounded
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$
los	Output Short-Circuit Current		-60		-150	mA	Max	$V_{OUT} = 0V$
I _{CC}	Power Supply Current			22.5	34.0	mA	Max	$CP = \checkmark$ $D_n = \overline{MR} = HIGH$


DC Electrical Characteristics


Symbol	Parameter		T _A = +25°C V _{CC} = +5.0V C _L = 50 pF			$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = 0^{\circ}C \text{ to } +70^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$	
		Min	Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	100	140		80		100		MHz
t _{PLH}	Propagation Delay	4.0	5.0	6.5	3.5	8.5	4.0	7.5	
t _{PHL}	CP to Q_n or \overline{Q}_n	4.0	6.5	8.5	4.0	10.5	4.0	9.5	ns
t _{PHL}	Propagation Delay MR to Q _n	4.5	9.0	11.5	4.5	15.0	4.5	13.0	ns
t _{PLH}	Propagation Delay \overline{MR} to \overline{Q}_n	4.0	6.5	8.0	4.0	10.0	4.0	9.0	ns

AC Operating Requirements

		T _A =	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$		$T_A = 0^\circ C \text{ to } +70^\circ C$ $V_{CC} = +5.0V$	
Symbol	Parameter	V _{CC} =						
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	3.0		3.0		3.0		
t _S (L)	D _n to CP	3.0		3.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	1.0		1.0		1.0		115
t _H (L)	D _n to CP	1.0		2.0		1.0		
t _W (H)	CP Pulse Width	4.0		4.0		4.0		
t _W (L)	HIGH or LOW	5.0		5.0		5.0		ns
t _W (L)	MR Pulse Width, LOW	5.0		5.0		5.0		ns
t _{REC}	Recovery Time, MR to CP	5.0		5.0		5.0		ns

